Yahoo Finance에서 주식 정보 가져오기 (3)

https://overmt.com/yahoo-finance에서-주식-정보-가져오기-1/
의 코드 중 코드 2를 기준으로 fetch_stock_data과 fetch_multiple_stocks 함수에 대해 알아보겠습니다.

Ⅰ. fetch_stock_data 함수에 대해 알아보기

async fn fetch_stock_data(symbol: &str) -> Result<StockData, Box<dyn std::error::Error + Send + Sync>> {
let url = format!("https://query1.finance.yahoo.com/v8/finance/chart/{}", symbol);

let client = reqwest::Client::new();
let response = client
.get(&url)
.header("User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36")
.send()
.await?;
let text = response.text().await?;
let yahoo_response: YahooResponse = serde_json::from_str(&text)?;
if let Some(result) = yahoo_response.chart.result.first() {
let meta = &result.meta;

Ok(StockData {
symbol: symbol.to_string(),
long_name: meta.long_name.clone().unwrap_or_else(|| "N/A".to_string()),
regular_market_price: meta.regular_market_price.unwrap_or(0.0),
currency: meta.currency.clone(),
regular_market_time: meta.regular_market_time.unwrap_or(0),
})
} else {
Err(format!("No data found for symbol: {}", symbol).into())
}
}

1. 함수 시그니처

async fn fetch_stock_data(symbol: &str) 
-> Result<StockData, Box<dyn std::error::Error + Send + Sync>>
  • async fn → 비동기 함수, await를 사용할 수 있음
  • 입력값: symbol → “AAPL”, “TSLA” 같은 종목 코드
  • 반환값은 성공 시는 StockData 구조체, 실패 시는 에러(Box<dyn std::error::Error + Send + Sync>를 반환하는데, 멀티스레드 환경이라 Box<dyn std::error::Error >에 Send(스레드간 이동)와 Sync(동시 접근) trait를 추가한 것임

2. 함수 동작 흐름

가. API URL 만들기

let url = format!(
"https://query1.finance.yahoo.com/v8/finance/chart/{}",
symbol
);
  • symbol을 이용해 Yahoo Finance의 차트 데이터 API 주소 구성
    예) https://query1.finance.yahoo.com/v8/finance/chart/AAPL

나. HTTP 클라이언트 준비

let client = reqwest::Client::new();
  • reqwest 라이브러리의 비동기 HTTP 클라이언트를 생성

다. GET 요청 보내기

let response = client
.get(&url)
.header(
"User-Agent",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
)
.send()
.await?;
  • Yahoo Finance API 서버에 GET 요청
  • 브라우저처럼보이게 하려고 User-Agent 헤더를 추가 (봇 차단 방지 목적)
  • .await? → 요청 완료를 기다리고, 실패 시 에러 전파

라. 응답 본문(JSON) 텍스트 추출

let text = response.text().await?;
  • HTTP 응답을 문자열 형태로 읽어옴

마. JSON 파싱

let yahoo_response: YahooResponse = serde_json::from_str(&text)?;
  • serde_json을 사용해 JSON 문자열을 YahooResponse구조체로 변환
  • 여기서 YahooResponse와 내부 구조(chart.result, meta 등)는 미리 serde를 이용해 파싱할 수 있도록 정의되어 있어야 함

바. 데이터 꺼내서 StockData 만들기

if let Some(result) = yahoo_response.chart.result.first() {
let meta = &result.meta;

Ok(StockData {
symbol: symbol.to_string(),
long_name: meta.long_name.clone().unwrap_or_else(|| "N/A".to_string()),
regular_market_price: meta.regular_market_price.unwrap_or(0.0),
currency: meta.currency.clone(),
regular_market_time: meta.regular_market_time.unwrap_or(0),
})
} else {
Err(format!("No data found for symbol: {}", symbol).into())
}
  • chart.result의 첫 번째 요소를 가져옴
  • 거기서 meta 정보를 추출
  • 회사명, 현재 시장 가격, 통화 단위, 마지막 거래 시간 등을 꺼내 StockData에 담음
  • 데이터가 없으면 Err로 반환
위 예에서, unwrap_or는 Option이 None일 때 값을 0.0 또는 0으로 지정하는데,
unwrap_or_else는 Option이 None일 때 클로저가 실행되고, clone()이 추가된 차이점이 있음

Ⅱ. fetch_multiple_stocks 함수에 대해 알아보기

async fn fetch_multiple_stocks(symbols: &[&str]) -> Vec<Result<StockData, Box<dyn std::error::Error + Send + Sync>>> {
let mut handles = Vec::new();

for &symbol in symbols {
let symbol_owned = symbol.to_string();
let handle = tokio::spawn(async move {
fetch_stock_data(&symbol_owned).await
});
handles.push(handle);
}

let mut results = Vec::new();
for handle in handles {
match handle.await {
Ok(result) => results.push(result),
Err(e) => results.push(Err(e.into())),
}
}

results
}

이 함수는 여러 주식 종목(symbol)을 동시에 비동기로 조회(fetch) 하기 위해 tokio::spawn을 사용하는 구조입니다.

1. 함수 시그니처

async fn fetch_multiple_stocks(
symbols: &[&str]
) -> Vec<Result<StockData, Box<dyn std::error::Error + Send + Sync>>>
  • async fn → 비동기 함수이므로 호출 시 .await 필요.
  • 입력값은 &[&str]로 &str 슬라이스 (예: &[“AAPL”, “GOOG”, “TSLA”])
  • 반환값: Result의 벡터
    – 각 종목(symbol)에 대해 Ok(StockData) 또는 Err(에러)가 담긴 리스트.
    – 즉, 한 종목 실패해도 다른 종목은 결과를 받을 수 있음.

2. 주요 동작 흐름

가. handles 벡터 생성

let mut handles = Vec::new();
  • 비동기 작업(태스크) 핸들을 저장해 둘 벡터.

나. 종목별 비동기 작업 생성

for &symbol in symbols {
let symbol_owned = symbol.to_string(); // 소유권 있는 String으로 변환
let handle = tokio::spawn(async move {
fetch_stock_data(&symbol_owned).await
});
handles.push(handle);
}
  • for 루프를 돌면서 각 종목 기호(&str)를 String으로 복사(to_string)
    → 이유: tokio::spawn의 async move 블록은 ‘static 라이프타임을 요구하기 때문.
    원본 &str는 반복문이 끝나면 사라질 수 있으니, 안전하게 소유권 있는 String 사용.
  • tokio::spawn(…) → 배경(백그라운드)에서 새로운 비동기 태스크 생성
  • async move → 클로저에 캡처되는 값(symbol_owned)을 이동(move)시켜 사용.
  • 결과: 각 종목을 조회하는 여러 비동기 태스크가 동시에 실행됨.

다. 모든 태스크 완료 대기

let mut results = Vec::new();
for handle in handles {
match handle.await {
Ok(result) => results.push(result),
Err(e) => results.push(Err(e.into())),
}
}
  • handle.await → 해당 비동기 태스크가 끝날 때까지 대기.
  • handle.await의 반환값:
    – Ok(result) → 작업이 정상 종료 → result(= Result)를 results에 저장.
    – Err(e) → 태스크 자체가 패닉 또는 취소 → 에러를 Box로 변환해 저장.

라. 결과 반환

results
  • 벡터에는 각 종목별 Result<StockData, Error>가 순서대로 저장됨.

마. 주의점

종목 수가 매우 많으면 동시에 많은 태스크가 실행되어 서버나 네트워크에 부하 발생 가능 → tokio::task::JoinSet이나 futures::stream::FuturesUnordered로 동시 실행 수를 제한하는 방법 고려 가능.

자바 클래스, 인터페이스와 러스트의 구조체, 메소드, 트레이트 방식 비교

자바(Java)는 모든 메소드를 클래스 내부에 정의합니다. 그러나, 러스트(Rust)는 데이터 구조(Struct)와 메소드(Impl block)가 물리적으로 분리되어 있습니다. 구조체 안에는 데이터만 정의하고, 별도의 impl 블록에서 그 구조체에 대한 메소드를 구현합니다.

Ⅰ. 데이터 구조, 메소드 구현 방식 비교

1. 자바: 클래스 내부에 메소드

자바(Java)는 모든 메소드를 클래스 내부에 정의합니다. 이는 객체 지향 프로그래밍(OOP)의 특징으로, 데이터(필드)와 행동(메소드)이 하나의 단위(클래스)에 밀접하게 결합(cohesion)되어 있습니다.

2. 러스트: 구조체와 메소드의 분리

러스트(Rust)에서는 데이터 구조(Struct)와 메소드(Impl block)가 물리적으로 분리되어 있습니다. 구조체 안에는 데이터만 정의하고, 별도의 impl 블록에서 그 구조체에 대한 메소드를 구현합니다.

3. 장단점

구분자바(메소드=클래스 내부)러스트(메소드=구조체 외부)
응집성데이터와 행동이 하나에 묶임데이터와 행동이 분리되어 명확
확장성상속 등 OOP 구조 확장 용이Trait, 여러 impl로 유연하게 확장
가독성클래스 안에서 한 번에 파악 가능데이터 정의와 메소드 구현 분리
유연성하나의 클래스가 하나의 메소드 집합같은 구조체에 여러 impl, trait 구현 가능
재사용성상속, 인터페이스로 구현Trait 등으로 다양한 방식의 재사용
관리의 용이성대형 클래스에서 복잡해질 수 있음관련 없는 메소드를 구조체와 별도 구현 가능
코드 조직화OOP 방식(클래스-중심)데이터 중심(struct), 행동 분리(impl, trait)
  • 자바는 객체 중심의 응집력, 개발 및 이해 용이성이 강점이나, 큰 클래스가 복잡해지거나 상속 구조의 한계 등이 있습니다.
  • 러스트는 데이터와 행동의 분리로 역할이 명확하며, trait 기반의 확장성과 안전성이 강점이지만, 초보자에겐 코드 연관성 파악이 다소 불편할 수 있습니다.

Ⅱ. 예제를 통한 비교

1. 자바(Java)

자바에서는 데이터(필드)와 메소드가 한 클래스 내부에 정의되어 객체 지향 프로그래밍 패러다임에 맞춰 응집되어 있습니다.

public class Point {
private int x;
private int y;

// 생성자
public Point(int x, int y) {
this.x = x;
this.y = y;
}

// 메소드: 두 점 사이 거리 계산
public double distance(Point other) {
int dx = this.x - other.x;
int dy = this.y - other.y;
return Math.sqrt(dx * dx + dy * dy);
}

// getter 메소드
public int getX() { return x; }
public int getY() { return y; }
}

// 사용
public class Main {
public static void main(String[] args) {
Point p1 = new Point(0, 0);
Point p2 = new Point(3, 4);
System.out.println(p1.distance(p2)); // 출력: 5.0
}
}
  • 징: Point 클래스 내부에 데이터(x, y)와 동작(거리 계산 메소드)을 모두 포함.
  • 장점: 객체 지향적 응집성(cohesion) 강화, 한 곳에서 모든 관련 기능 파악 가능.
  • 단점: 클래스가 커질수록 복잡성 증가, 상속 구조 제한 등.

2. 러스트(Rust)

러스트는 데이터 구조체(struct)와 메소드 구현부(impl 블록)를 분리해서 작성합니다. 이로써 역할 분리가 명확해지고, 여러 impl 블록과 trait을 통해 유연하게 확장할 수 있습니다.

// 데이터 정의: 구조체는 필드만 가짐
struct Point {
x: i32,
y: i32,
}

// 메소드 구현: impl 블록에서 정의
impl Point {
// 연관 함수(정적 메서드와 유사)
fn new(x: i32, y: i32) -> Point {
Point { x, y }
}

// 메소드: 두 점 사이 거리 계산
fn distance(&self, other: &Point) -> f64 {
let dx = (self.x - other.x) as f64;
let dy = (self.y - other.y) as f64;
(dx.powi(2) + dy.powi(2)).sqrt()
}
}

fn main() {
let p1 = Point::new(0, 0);
let p2 = Point::new(3, 4);
println!("{}", p1.distance(&p2)); // 출력: 5.0
}
  • 특징: struct는 데이터만 선언, 메소드는 별도의 impl 블록에서 구현.
  • 장점: 데이터와 행동이 분리되어 역할 명확, 여러 impl이나 trait로 기능 확장 유리, 컴파일타임 안전성 증대.
  • 단점: 관련 데이터와 메소드가 코드상 분리되어 있어 한눈에 파악하기 어려울 수 있음, 전통적인 OOP 방식과 차이 있음.

3. 비교 표

항목자바(Java)러스트(Rust)
구조클래스 내부에 데이터와 메소드가 함께 있음구조체(데이터)와 impl 블록(메소드)로 분리
작성 방식한 클래스 파일 내에서 모든 정의struct로 데이터 정의, 별도 impl로 메소드 구현
확장성상속과 인터페이스 기반 확장 (단일 상속)여러 impl 블록과 trait 조합으로 유연하고 다중 확장 가능
가독성관련 데이터와 메소드가 한 곳에 있어 파악 용이데이터와 메소드가 분리되어 코드가 흩어질 수 있음
안전성런타임 검사 및 가비지 컬렉션컴파일 타임 소유권 및 빌림 검사로 메모리 안전성 강화
메모리참조 타입 중심, 힙 할당 및 가비지 컬렉션 필요값 타입 중심, 명확한 메모리 제어 및 성능 최적화 가능
객체 지향전통적인 OOP 완전 지원클래스는 없으나 trait로 인터페이스 역할 및 객체지향 유사 기능 제공

러스트의 구조체+impl 방식은 자바와는 다르게 데이터와 메소드가 분리되어 있지만, impl 블록 내에서 메소드를 묶어 객체 지향적 프로그래밍의 많은 특징을 흉내 낼 수 있습니다. trait를 활용하면 인터페이스 역할도 하며, 상속 대신 다중 trait 구현으로 유연하게 기능을 확장할 수 있습니다.

Ⅲ . 자바의 상속과 인터페이스 구조와 러스트의 고급 Trait(트레이트) 및 패턴 비교

자바의 상속과 인터페이스 구조와 러스트의 고급 Trait(트레이트) 및 패턴을 심도 있게 비교 설명하면 다음과 같습니다.

1. 자바의 상속과 인터페이스 구조

가. 상속 (Inheritance)

  • 클래스 간에 “is-a” 관계를 표현하는 가장 기본적인 메커니즘입니다.
  • 한 클래스가 다른 클래스(부모 클래스)를 상속받아 멤버 변수와 메소드를 재사용하거나 오버라이드할 수 있습니다.
  • 단일 상속만 지원하여 다중 상속의 복잡성을 회피합니다.
  • 상속 구조가 깊어지면 유지보수가 어려워지고, 부모 클래스 변경 시 자식 클래스에 의도치 않은 영향이 발생할 수 있음.

나. 인터페이스 (Interface)

  • 여러 클래스가 구현해야 하는 메소드의 명세(계약)를 정의합니다.
  • 자바 8부터는 디폴트 메소드 구현도 지원하여 일부 기능적 확장 가능.
  • 인터페이스의 다중 구현이 가능해 상속 단점을 보완하고 다형성 제공.
  • 인터페이스는 구현 메소드가 없거나 기본 구현만 제공하므로, 설계 시 유연성을 줌.
interface Flyer {
void fly();
}
class Bird implements Flyer {
public void fly() {
System.out.println("Bird is flying");
}
}
class Airplane implements Flyer {
public void fly() {
System.out.println("Airplane is flying");
}
}

2. 러스트의 고급 Trait 및 패턴

가. Trait(트레이트) 개념

  • 러스트의 트레이트는 특정 기능을 구현하도록 강제하는 인터페이스 역할을 합니다.
  • 타입에 따라 여러 트레이트를 다중으로 구현할 수 있어 매우 유연합니다.
  • 트레이트 내에 메소드 기본 구현(default method)을 제공해 부분 구현도 가능.
  • Trait는 다중 상속을 대체하며, 조합(composition) 및 다형성을 지원합니다.

나. 고급 트레이트 특징

(1) 동일 메소드명을 가진 다중 트레이트 구현 (충돌 해결)

  • 예를 들어, 같은 이름 fly() 메소드를 가진 서로 다른 트레이트 Pilot, Wizard를 Human 타입에 모두 구현 가능.
  • 호출 시 Pilot::fly(&human), Wizard::fly(&human)처럼 트레이트 이름을 명시해 충돌 해결.
trait Pilot {
fn fly(&self);
}
trait Wizard {
fn fly(&self);
}
struct Human;

impl Pilot for Human {
fn fly(&self) {
println!("This is your captain speaking.");
}
}

impl Wizard for Human {
fn fly(&self) {
println!("Up!");
}
}

impl Human {
fn fly(&self) {
println!("*waving arms furiously*");
}
}

fn main() {
let person = Human;
Pilot::fly(&person); // This is your captain speaking.
Wizard::fly(&person); // Up!
person.fly(); // *waving arms furiously*
}

(2) 슈퍼 트레이트 (Super-traits)

  • 한 트레이트가 다른 트레이트의 구현을 전제로 하는 경우 사용.
  • 예: OutlinePrint 트레이트가 Display 트레이트를 반드시 구현한 경우에만 구현 가능하도록 제한.
use std::fmt::Display;

trait OutlinePrint: Display {
fn outline_print(&self) {
// Display 기능 이용해 출력하는 구현
println!("*{}*", self);
}
}

(3) 제네릭과 트레이트 바운드 (Trait Bounds)

  • 함수, 구조체, 열거형 등에서 트레이트를 타입 매개변수 조건으로 지정하여 유연한 재사용성 제공.
fn print_info<T: Display + Clone>(item: T) {
println!("{}", item);
}

(4) Newtype 패턴

  • 외부 타입에 대해 새로운 타입을 만든 뒤 트레이트를 구현해 동작을 확장하거나 수정하는 패턴.
  • 원래 타입의 구현과 격리돼 안전성과 캡슐화 유지에 도움.

다. 자바 상속-인터페이스와 러스트 Trait 패턴 비교

특징자바 (상속, 인터페이스)러스트 (고급 Trait 패턴)
다중 상속 지원 여부클래스는 단일 상속, 인터페이스 다중 구현 가능다중 트레이트 구현 완전 지원
메소드 충돌 처리인터페이스 디폴트 메소드 충돌은 명시적 오버라이딩 필요트레이트별로 명시적 호출(TraitName::method)로 충돌 처리
구현 분리 여부상속 기반으로 구현 내용 일부 공유, 부모-자식 직접 연관데이터와 행동 완전 분리, 여러 impl 블록과 트레이트로 유연한 구현
확장성 및 유연성인터페이스와 추상 클래스 활용 가능, 런타임 다형성 제공트레이트 조합 및 바운드로 더 강력하고 유연한 제네릭 기반 다형성 가능
안전성런타임에 예외 발생 가능, 컴파일 타임 타입 검사 제한컴파일 타임 엄격한 타입 검사 및 소유권 규칙으로 높은 안전성 보장
메모리 구조클래스는 힙에 할당, 가비지 컬렉션 필요구조체는 값 타입(STACK 기반), 트레이트 객체는 런타임에 크기를 모르는 타입 표현 지원

라. 러스트 Trait를 활용한 고급 설계 패턴 예시

(1) Trait 객체 (Trait Objects)

  • 런타임에 다양한 타입을 동적으로 처리하고자 할 때 사용.
  • Box<dyn Trait> 형태로 포인터에 담아 추상화 제공.
trait Animal {
fn speak(&self);
}

struct Dog;
struct Cat;

impl Animal for Dog {
fn speak(&self) {
println!("Woof!");
}
}

impl Animal for Cat {
fn speak(&self) {
println!("Meow!");
}
}

fn make_animal_speak(animal: Box<dyn Animal>) {
animal.speak();
}

fn main() {
let dog = Box::new(Dog);
let cat = Box::new(Cat);

make_animal_speak(dog);
make_animal_speak(cat);
}

(2) 제네릭과 Trait Bound를 이용한 추상화

fn print_animal_speak<T: Animal>(animal: T) {
animal.speak();
}

(3) Newtype 패턴

struct Wrapper(Vec<String>);

impl std::fmt::Display for Wrapper {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "[{}]", self.0.join(", "))
}
}

5. 러스트 Trait 객체와 동적 디스패치(Dynamic Dispatch)

가. 기본 개념

  • 러스트의 Trait 객체는 런타임에 다양한 타입들을 추상화하고 동적으로 호출할 수 있게 하는 기능입니다.
  • 구체적인 타입을 명시하지 않고 특정 트레이트를 구현한 여러 객체를 하나의 타입으로 사용할 때 유용합니다.
  • dyn Trait 키워드로 표현하며, 이때 메소드 호출은 컴파일 타임이 아닌 런타임에 결정(동적 디스패치)됩니다.

나. 장점

  • 다양한 타입에 대해 동일 인터페이스 역할을 수행할 수 있게 하며, 실행 시점에 적절한 메소드가 호출됩니다.
  • 유연한 설계와 다형성 제공.

다. 단점

  • 동적 디스패치로 인해 약간의 성능 오버헤드 발생.
  • 컴파일 타임에 타입 크기를 알 수 없으므로 보통 Box<dyn Trait>, &dyn Trait 형태로 사용.

예제 코드

trait Animal {
fn speak(&self);
}

struct Dog;

impl Animal for Dog {
fn speak(&self) {
println!("Woof!");
}
}

struct Cat;

impl Animal for Cat {
fn speak(&self) {
println!("Meow!");
}
}

fn animal_speak(animal: &dyn Animal) {
animal.speak();
}

fn main() {
let dog = Dog;
let cat = Cat;

animal_speak(&dog); // Woof!
animal_speak(&cat); // Meow!
}
  • animal_speak 함수는 타입이 &dyn Animal로, 호출하는 객체가 Dog이든 Cat이든 런타임에 올바른 speak 메서드를 호출합니다.

요약

  • 자바의 상속과 인터페이스는 클래스 중심의 단일 상속과 다중 인터페이스 구현으로 객체 지향 프로그래밍 패러다임을 완성하며, 런타임 다형성을 제공합니다.
  • 러스트의 트레이트는 다중 상속을 대체하고, 유연한 기능 확장과 컴파일 타임 안전성을 제공하며, 타입별로 여러 트레이트를 조합해 강력한 추상화와 다형성을 구현합니다.
  • 러스트에서 트레이트는 충돌 해결, 슈퍼 트레이트, 제네릭 바운드, 트레이트 객체 등 다양한 고급 패턴으로 복잡한 설계를 수행할 수 있습니다.
  • 두 언어 모두 장단점이 있으므로, 팀의 경험과 프로젝트 요구사항에 따라 적합한 방식을 선택하는 것이 중요합니다.

비동기 프로그래밍 (async/await)

Rust는 성능과 안전성을 동시에 추구하는 언어입니다. 이런 철학은 비동기 프로그래밍(asynchronous programming)에도 그대로 적용됩니다. Rust의 async/await 문법은 동시성(concurrency)을 효과적으로 다루기 위한 강력한 도구로, 네트워크 프로그래밍이나 고성능 IO 처리에 자주 사용됩니다.


1. 비동기 프로그래밍이란?

비동기 프로그래밍이란, 어떤 작업이 완료될 때까지 기다리는 대신 다른 작업을 먼저 수행하도록 코드를 구성하는 방식입니다. 예를 들어 웹 서버가 여러 클라이언트의 요청을 동시에 처리할 때, 각각의 요청마다 새로운 스레드를 만들기보다, 하나의 스레드에서 여러 요청을 비동기적으로 처리하면 더 적은 리소스로 높은 성능을 얻을 수 있습니다.


2. async/await 개념

Rust의 비동기 프로그래밍은 크게 세 가지로 나뉩니다:

  • async fn: 비동기 함수를 정의하는 키워드
  • await: 비동기 함수의 결과를 기다리는 키워드
  • Future: 아직 완료되지 않은 비동기 작업을 나타내는 타입
async fn say_hello() {
println!("Hello!");
}

이 함수는 호출해도 바로 실행되지 않고, Future를 반환합니다. 실제로 실행되려면 .await를 사용해야 합니다.

say_hello().await;

3. 비동기 실행을 위한 런타임 (tokio)

Rust 표준 라이브러리는 자체적인 비동기 런타임을 제공하지 않습니다. 따라서 일반적으로 tokio 같은 서드파티 런타임을 사용합니다. tokio는 가장 널리 사용되는 비동기 런타임이며, 다양한 네트워크, 타이머, 채널 등 유틸리티를 제공합니다.

[dependencies]
tokio = { version = "1", features = ["full"] }

Cargo.toml의 dependencies에 tokio를 추가하고 cargo run을 하면 관련 라이브러리들이 자동으로 설치됩니다.

비동기 main 함수를 사용하려면 다음과 같이 작성합니다:

#[tokio::main]
async fn main() {
say_hello().await;
}

Cargo.toml과 별도로 main.rs의 코드는 아래와 같습니다.

#[tokio::main]
async fn main() {
    say_hello().await; 
}

async fn say_hello() {
    println!("Hello!");
}

#[tokio::main] 어트리뷰트

이 부분은 Tokio 런타임을 자동으로 시작해주는 매크로 어트리뷰트입니다.

  • Rust에서 async fn main()을 그냥 실행할 수는 없습니다. 왜냐하면 Rust는 기본적으로 비동기 실행 환경(런타임)을 제공하지 않기 때문이에요.
  • [tokio::main]은 main 함수에 Tokio 런타임을 삽입해서 비동기 코드를 실행할 수 있게 만들어줍니다.

async fn main()

이 함수는 비동기 함수입니다.

  • 비동기 함수는 실행될 때 Future를 반환합니다.
  • 이 Future는 .await될 때까지는 실제로 실행되지 않습니다.
  • 하지만 #[tokio::main] 덕분에 main() 함수도 비동기 함수로 정의할 수 있게 되었고, 프로그램은 say_hello().await를 실행하면서 say_hello 함수의 Future를 기다립니다.

say_hello().await

  • .await를 사용하면 이 Future의 실행을 기다립니다.
  • 즉, say_hello() 함수의 본문이 실행될 때까지 main 함수는 멈춰서 기다립니다.

async fn say_hello()

비동기 함수이지만 내부에 특별한 비동기 작업은 없습니다.

async fn say_hello() {
println!("Hello!");
}
  • 이 함수는 단지 “Hello!”를 출력합니다.
  • 비록 내부에 await는 없지만, 비동기 함수로 작성된 이유는 비동기 구조의 연습 또는 나중에 비동기 작업 (예: 네트워크 요청) 을 넣기 위함입니다.

위 코드를 실행하면 Hello!가 출력되는데,

아래와 같이 main과 say_hello함수의 순서를 바꾸고 실행하니 에러가 발생합니다.


4. 비동기 예제: 타이머

다음은 두 개의 비동기 작업을 동시에 실행하는 예제입니다:

use tokio::time::{sleep, Duration};

#[tokio::main]
async fn main() {
let task1 = async {
sleep(Duration::from_secs(2)).await;
println!("2초 작업 완료");
};

let task2 = async {
println!("즉시 실행");
};

tokio::join!(task1, task2);
}

위 코드에서 sleep은 비동기적으로 대기하는 함수입니다. tokio::join! 매크로는 두 작업을 동시에 실행하고, 둘 다 완료될 때까지 기다립니다.

위 코드를 실행하면 “즉시 실행”을 먼저 출력하고, 2초 후에 “2초 작업 완료”를 출력합니다.


5. Future의 본질

Rust의 비동기 함수는 내부적으로 Future 트레잇을 구현하는 구조체를 반환합니다. 이 구조체는 “언제 실행될지 모르는 작업”을 표현하며, .await가 호출되었을 때에만 실행이 시작됩니다.

간단한 예시:

use std::future::Future;

async fn return_num() -> u32 {
10
}

fn main() {
let fut = return_num(); // 실행되지 않음
// fut는 Future 타입, 여기선 실행되지 않음
}

async 블록이나 함수는 Future를 만들기 위한 “공장(factory)” 역할만 하며, 실제 실행은 .await 또는 런타임에 의해 수행됩니다.

  • async fn return_num() -> u32:
    이 함수는 u32를 비동기로 반환하는 함수입니다.
    하지만 실제로는 u32인 10을 바로 리턴하는 단순한 함수입니다. Rust의 async fn은 항상 Future를 반환합니다.
  • let fut = return_num();
    여기서 return_num()을 호출했지만 실제 10을 반환하지 않습니다.
    대신 미래에 10을 반환할 수 있는 준비 상태의 Future 객체만 생성했을 뿐입니다.
  • fut는 실행 가능한 비동기 작업을 담고 있는 Future 타입입니다.
    하지만 실제로 실행(await)하지 않았기 때문에 아무 일도 일어나지 않습니다.
    실제 실행하려면 아래와 같이 .await를 사용해서 실행해야 합니다.
#[tokio::main]
async fn main() {
    let fut = return_num(); // fut: Future
    let result = fut.await; // 이제 실행됨!
    println!("결과: {}", result); // 출력: 결과: 10
}

6. 동시성(concurrency) vs 병렬성(parallelism)

Rust에서 async는 동시성을 위한 기능입니다. 하나의 스레드에서 여러 작업을 번갈아가며 처리하는 구조입니다. 반면, 병렬성은 여러 CPU 코어에서 동시에 작업을 수행하는 것으로, std::thread 등을 통해 구현합니다. 둘은 목적이 다르지만 상호 보완적으로 사용될 수 있습니다.


7. 실전 예제: HTTP 요청

비동기의 진가는 네트워크 작업에서 드러납니다. 예를 들어, reqwest 라이브러리를 이용한 HTTP GET 요청은 다음과 같습니다.

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let resp = reqwest::get("https://httpbin.org/get").await?;
let body = resp.text().await?;
println!("응답 본문:\n{}", body);
Ok(())
}
async fn main() -> Result<(), Box<dyn std::error::Error>>
  • async fn main(): main 함수 자체가 비동기 함수로 정의되어 있습니다.
  • Result<(), Box<dyn std::error::Error>> :
    ? 연산자를 사용하기 위해 오류 처리를 Result 타입으로 합니다.
    다양한 종류의 오류(reqwest::Error, std::io::Error, 등)를 포괄하기 위해 Box<dyn std::error::Error>>를 사용합니다.

let resp = reqwest::get(“https://httpbin.org/get”).await?;
  • reqwest::get(…): reqwest 라이브러리로 GET 요청을 보냅니다.
  • .await: 비동기 요청이 완료될 때까지 기다립니다.
  • ?: 요청 중 오류가 발생하면 main 함수에서 곧바로 리턴됩니다.
  • resp는 reqwest::Response 타입입니다.

let body = resp.text().await?;
  • 응답 객체인 resp에서 본문을 텍스트로 변환합니다.
  • text()는 Future를 반환하므로 .await로 기다립니다.
  • ?로 오류 처리합니다.
  • 결과는 String 타입입니다.

println!(“응답 본문:\n{}”, body);
  • 응답 본문 전체를 콘솔에 출력합니다.

Ok(())

함수가 정상적으로 끝났다는 것을 알리는 반환값입니다.reqwest::get()과 resp.text()는 모두 Future를 반환하므로 .await를 사용해야 합니다.


실행했더니 reqwest에서 에러가 발생해서 Cargo.toml에 reqwest = “0.12.20”을 추가해야 합니다.

[dependencies]
reqwest = "0.12.20"
tokio = { version = "1", features = ["full"] }

그리고, 실행하면 관련 라이브러리들을 설치하고, 컴파일하고 run을 하고, get한 결과를 출력합니다.

8. async와 에러 처리

비동기 함수에서도 Result 타입을 반환하여 에러를 처리할 수 있습니다.

#[tokio::main]
async fn main() {
match fetch_data().await {
Ok(body) => println!("응답 본문:\n{}", body),
Err(e) => eprintln!("요청 중 오류 발생: {}", e),
}
}

async fn fetch_data() -> Result<String, reqwest::Error> {
let resp = reqwest::get("https://example.com").await?;
let text = resp.text().await?;
Ok(text)
}
fetch_data().await
  • fetch_data는 비동기 함수이므로 실행하려면 .await를 붙여야 실제로 실행됩니다.
  • Result를 반환합니다.

이줄에서 fetch_data()의 실행이 끝날 때까지 기다리고, 그 결과에 따라 아래 match가 분기됩니다.

성공한 경우 (Ok)
  • HTTP 요청이 성공하면 응답 본문이 String 타입으로 body에 담깁니다.
  • 그것을 println!으로 콘솔에 출력합니다.
실패한 경우 (Err)
  • 요청 도중 네트워크 오류, 타임아웃 등 문제가 발생하면 reqwest::Error가 e에 들어옵니다.
  • println!는 표준 에러 스트림에 메시지를 출력합니다 (보통 터미널에서 빨간 글씨로 나옴).
async fn fetch_data() -> Result <String, reqwest::Error> {
  • async fn: 비동기 함수입니다. 호출 시 바로 실행되지 않고, Future를 반환합니다.
  • Result<String, reqwest::Error>:
    Ok(String): 요청이 성공하면 응답 본문을 String으로 감싸서 반환합니다.
    Err(reqwest::Error): 네트워크 오류, HTTP 오류 등이 발생하면 오류를 반환합니다.

let resp = reqwest::get(“https://example.com”).await?;
  • reqwest::get(…): GET 방식으로 HTTP 요청을 보냅니다.
  • .await: 이 작업이 완료될 때까지 기다립니다. 이때 다른 작업은 블로킹되지 않으며, tokio 런타임이 비동기적으로 대기합니다.
  • ?: 요청 도중 에러가 발생하면 바로 Err를 반환하며, 함수가 종료됩니다.

이 줄의 결과는 resp 변수에 저장되며, 이는 응답(Response) 객체입니다.


let text = resp.text().await?;
  • resp.text(): 응답 본문을 String으로 변환하는 Future를 반환합니다.
  • .await: 이 본문을 받아올 때까지 대기합니다.
  • ?: 변환 과정에서 에러가 나면 역시 Err를 반환하며 함수가 종료됩니다.

Ok(text)
  • 모든 작업이 성공적으로 끝나면 text 값을 Result의 Ok로 감싸서 반환합니다.

성공할 경우의 실행 결과는 아래와 같고,

사이트 주소에서 e를 제거해서 exampl.com으로 수정하고 실행하니 아래와 같이 “요청 중 오류 발생: error sending request” 에러 메시지가 표시됩니다.


9. 정리

개념설명
async fn비동기 함수 정의
.awaitFuture의 완료를 기다림
Future완료되지 않은 작업
tokio비동기 런타임 라이브러리
join!여러 Future를 동시에 실행
sleep()비동기 대기 함수

10. 마무리

Rust의 비동기 프로그래밍은 고성능 서버나 네트워크 애플리케이션을 만들 때 매우 강력합니다. 하지만 컴파일러가 엄격하게 검사하므로 안전한 동시성 코드를 작성할 수 있습니다.